3.4.8 \(\int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx\) [308]

3.4.8.1 Optimal result
3.4.8.2 Mathematica [C] (verified)
3.4.8.3 Rubi [A] (verified)
3.4.8.4 Maple [A] (verified)
3.4.8.5 Fricas [C] (verification not implemented)
3.4.8.6 Sympy [F]
3.4.8.7 Maxima [F]
3.4.8.8 Giac [F]
3.4.8.9 Mupad [F(-1)]

3.4.8.1 Optimal result

Integrand size = 23, antiderivative size = 131 \[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\frac {36 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\sec (c+d x)}} \]

output
2/5*a^3*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)+ 
36/5*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2 
*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4*a^3*(cos(1/2*d* 
x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)) 
*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.4.8.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.31 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.05 \[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\frac {a^3 \left (\frac {144 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}+2 \left (-36 i-20 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+10 \sin (c+d x)+\sin (2 (c+d x))\right )\right )}{10 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]
 
output
(a^3*(((144*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))])/Sq 
rt[1 + E^((2*I)*(c + d*x))] + 2*(-36*I - (20*I)*Sqrt[1 + E^((2*I)*(c + d*x 
))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] + 
10*Sin[c + d*x] + Sin[2*(c + d*x)])))/(10*d*Sqrt[Sec[c + d*x]])
 
3.4.8.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3717, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^3}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (\frac {3 a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {a^3}{\sec ^{\frac {5}{2}}(c+d x)}+a^3 \sqrt {\sec (c+d x)}+\frac {3 a^3}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\sec (c+d x)}}+\frac {4 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {36 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\)

input
Int[(a + a*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]
 
output
(36*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/( 
5*d) + (4*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d* 
x]])/d + (2*a^3*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*a^3*Sin[c + d* 
x])/(d*Sqrt[Sec[c + d*x]])
 

3.4.8.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
3.4.8.4 Maple [A] (verified)

Time = 6.86 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.91

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{3} \left (-4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+14 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(250\)
parts \(-\frac {2 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {6 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(657\)

input
int((a+cos(d*x+c)*a)^3*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-4/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(-4*cos(1 
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+14*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2 
*c)-6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.4.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.19 \[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (a^{3} \cos \left (d x + c\right )^{2} + 5 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{5 \, d} \]

input
integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
-2/5*(5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c)) - 5*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c)) - 9*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 9*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (a^3*cos(d*x 
 + c)^2 + 5*a^3*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 
3.4.8.6 Sympy [F]

\[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=a^{3} \left (\int 3 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int 3 \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \cos ^{3}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))**3*sec(d*x+c)**(1/2),x)
 
output
a**3*(Integral(3*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(3*cos(c + 
d*x)**2*sqrt(sec(c + d*x)), x) + Integral(cos(c + d*x)**3*sqrt(sec(c + d*x 
)), x) + Integral(sqrt(sec(c + d*x)), x))
 
3.4.8.7 Maxima [F]

\[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)
 
3.4.8.8 Giac [F]

\[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)
 
3.4.8.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3 \,d x \]

input
int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^3,x)
 
output
int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^3, x)